
11/30/2011

1

Unit Tests and Object References

Implementing Classes in Java, using
Documented Stubs, Test-First Programming

Check out UnitTesting and
WordGames from SVN

Syllabus

Reading assignments

Homework

Things discussed in class

Anything else

11/30/2011

2

� Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!

◦ You’ll usea few dozen of them during this course

� Get in the habit of writing the javadocs beforebeforebeforebefore
implementing the methods
◦ It will help you think before doing, a vital software

development skill

◦ This is called programming with documented stubsdocumented stubsdocumented stubsdocumented stubs

◦ I’ll try to model this. If I don’t, call me on it!

Q1

Test-driven Development,
unit testing and JUnit

11/30/2011

3

� Using code that you write to test other code
◦ Focused on testing individual pieces of code (units) in

isolation

� Individual methods

� Individual classes

� Why would software engineers do unit testing?

Q2

� JUnit is a unit testing framework
◦ A framework is a collection of classes to be used

in another program.

◦ Does much of the work for us!

� JUnit was written by
◦ Erich Gamma

◦ Kent Beck

� Open-source software

� Now used by millionsmillionsmillionsmillions of Java developers

Q3

11/30/2011

4

� MoveTester in Big Java shows how to write
tests in plain Java

� Look at JUnitMoveTester in today’s repository
◦ Shows the same test in JUnit

◦ Let’s look at the comments and code together…

� Test “boundary conditions”
◦ Intersection points: -40℃ == -40℉

◦ Zero values: 0℃ == 32℉

◦ Empty strings

� Test known values: 100℃ == 212℉
◦ But not too many

� Tests things that might go wrong
◦ Unexpected user input: “zero” when 0 is expected

� Vary things that are “important” to the code
◦ String length if method depends on it

◦ String case if method manipulates that

Important Slide: Use this
as a reference!

11/30/2011

5

Unit test shout, whisper, and
holleWerld using “interesting”
test cases

Differences between primitive
types and object types in Java

11/30/2011

6

� Variables of primitive type store values

� Variables of class type store references
◦ A reference is like a pointer in C, except

� Java keeps us from screwing up

� No & and * to worry about
(and the people say, “Amen”)

� Consider:

1. int x = 10;
2. int y = 20;
3. Rectangle box = new Rectangle(x, y, 5, 5);

10x

20y

5

10

20

5

box

Q4

� Actual value for number types

� ReferenceReferenceReferenceReference value for object types
◦ The actual object is not copiedobject is not copiedobject is not copiedobject is not copied

◦ The reference value reference value reference value reference value (“the pointer”) is copiedis copiedis copiedis copied

� Consider:
1. int x = 10;
2. int y = x;
3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);
5. Rectangle box2 = box;
6. box2.translate(4, 4);

10x

10y 8

5

6

7
box

× 20

box2

× 9

× 10

Q5 – Q6

11/30/2011

7

Separating implementation
details from how an object is
used

� Encapsulation—separating implementation
details from how an object is used
◦ Client code sees a black box with a known interface

◦ Implementation can change without changing client

FunctionsFunctionsFunctionsFunctions ObjectsObjectsObjectsObjects

BlackBlackBlackBlack box box box box
exposesexposesexposesexposes

Function
signature

Constructor and
method
signatures

EncapsulatedEncapsulatedEncapsulatedEncapsulated
inside the boxinside the boxinside the boxinside the box

Operation
implementation

DataDataDataData storagestoragestoragestorage and
operationoperationoperationoperation
implementationimplementationimplementationimplementation

Q7 – Q8

11/30/2011

8

1.1.1.1. Create the Create the Create the Create the (initially empty) classclassclassclass

◦ File ⇒ New ⇒ Class

2. Write documented stubs documented stubs documented stubs documented stubs for the public interface of the class

3.3.3.3. Implement the class:Implement the class:Implement the class:Implement the class:

◦ Determine and implement instance fields

◦ Implement constructors and methods, adding private methods and
additional instance fields as needed

4.4.4.4. Test the classTest the classTest the classTest the class

3. Test and implement each
constructor and method

• Write the test cases BEFORE
implementing the constructor/method

WordGames Shouter

11/30/2011

9

� CensorCensorCensorCensor: given a string inputStringinputStringinputStringinputString, produces a new string by
replacing each occurrence of charToCensorcharToCensorcharToCensorcharToCensor with a “****” (an
asterisk).

� How do you deal with charToCensorcharToCensorcharToCensorcharToCensor ?

◦ Can it be a parameter of transform?

� No, that violates the specification

◦ Can it be a local variable of transform?

� No, it needs to live for the entire lifetime of the Censor.

◦ What’s left?

� Answer: It is a field field field field ! (What is a sensible name for the field?)

� How do you initialize the field for charToCensorcharToCensorcharToCensorcharToCensor ?

◦ Answer: by using Censor’s constructors!

WordGames Censor

11/30/2011

10

Continue with homework if
time permits

Q9 – Q10

